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Abstract—We present experimental results on intrin-
sic 1/f frequency modulation (FM) noise in high-overtone
thin-film sapphire resonators that operate at 2 GHz. The
resonators exhibit several high-Q resonant modes approx-
imately 100 kHz apart, which repeat every 13 MHz. A
loaded Q of approximately 20000 was estimated from the
phase response. The results show that the FM noise of the
resonators varied between Sy (10 Hz) = —202 dB relative
(rel) to 1/Hz and —210 dB rel to 1/Hz. The equivalent
phase modulation (PM) noise of an oscillator using these
resonators (assuming a noiseless amplifier) would range
from £(10 Hz) = —39 to —47 dBc/Haz.

I. INTRODUCTION

HE FREQUENCY stability of an oscillator is a function
Tof the Q of the resonator and the intrinsic noise of its
components (resonator, loop amplifier, and gain control
circuitry). Thus, important characteristics of a resonator
are high Q and low frequency noise. If a resonator with
FM noise of Sy(f) is used in an oscillator, its contribution
to the PM noise of the oscillator is given by [1]

2
£ =5 (%) 8,0 M
where L(f) is the noise in the oscillator, v, is the carrier
frequency, and f is the Fourier frequency.

In this paper, we report on the intrinsic FM noise of 2-
GHz overmoded resonators. These resonators are made of
thin-film piezoelectric material deposited on a high-Q sap-
phire substrate. Fig. 1 shows a diagram of the overmoded
resonator. The piezoelectric material was aluminum ni-
tride (2 pm thick). The sapphire used as substrate was
0.5 mm thick, and the aluminum electrodes were 0.2 pum
thick. Because the thickness of the substrate is much larger
than the thickness of the thin film, the resonator operates
at a large mode number. In this study, we used resonators
arranged in a 3/2 ladder filter (three resonators in series
and two in shunt) as shown in Fig. 2. More details on the
resonator design, fabrication, and operation are given in
[2], [3]- The overmoded resonators used in this study do
not exhibit a turnover temperature, and their temperature
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Fig. 1. Diagram of overmoded resonator.
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Fig. 2. 3/2 ladder filter structure used (three resonators in series and
two resonators in shunt).

coefficient is the temperature coefficient of the sapphire,
approximately —30 ppm/°C. The advantages of these res-
onators over other technologies are their high Q, in addi-
tion to their small size, which, in principle, would make
possible the building of an oscillator in a very small pack-
age.

II. TRANSMISSION CHARACTERISTICS

The resonators were ovenized to stabilize their trans-
mission characteristics. A network analyzer was used to
measure the transmission characteristics of the ovenized
resonators. The transmission characteristics of the three

0885-3010/$10.00 © 2001 IEEE
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Fig. 3. Transmission characteristics of Resonator 1. The start
frequency is 1996.470 582 MHz, and the stop frequency is
1997.494 366 MHz. For the magnitude plot, the reference level is
—6.5 dB, and the vertical scale is 1 dB/division. For the phase plot,
the reference level is —20°, and the vertical scale is 8.6° per division.

resonators tested are shown in Fig. 3-5. Resonator 1 shows
four high-Q resonances approximately 100 kHz apart, and
Resonators 2 and 3 show two high-Q resonances approxi-
mately 100 kHz apart. These resonances are repeated ap-
proximately every 13 MHz. The insertion loss varies be-
tween 10 and 14 dB among the resonators and the differ-
ent modes. An estimate for the loaded Q of the modes was
obtained from the phase response and the relation

A¢ = 2QuAy (2)

where A¢ refers to the phase difference, Qr, is the loaded Q
of the resonator, and Ay refers to the fractional frequency
difference. The estimated Qp, was 20000.

III. FREQUENCY NOISE MEASUREMENTS

Fig. 6 shows a simplified block diagram of the frequency
discriminator measurement system used for measuring the
intrinsic FM noise of the ovenized resonators [4]. A sig-
nal generator was used as the driving source, and a single
overmoded resonator was used as the frequency discrimi-
nator. As shown, carrier suppression was used to improve
the noise floor of the measurement system [5], [6].

Fig. 7 shows FM noise results for Resonator 2 at
a 12-dBm drive level. In this case, measurements were
made at three different modes: f; = 1.990307400 GHz
(Trace A), f; = 2.002994680 GHz (Trace B), and f3 =

Fig. 4. Transmission characteristics of Resonator 2. The start
frequency is 2002.823 862 MHz, and the stop frequency is
2003.650 231 MHz. For the magnitude plot, the reference level is
—8.7 dB, and the vertical scale is 1.4 dB/division. For the phase
plot, the reference level is —84.4°, and the vertical scale is 9.7° per
division.
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Fig. 5. Transmission characteristics of Resonator 3. The start fre-
quency is 2003.8 MHz, and the stop frequency is 2004.6 MHz. For
the magnitude plot, the reference level is —6.5 dB, and the vertical
scale is 1.2 dB/division. For the phase plot, the reference level is
—90° and the vertical scale is 8.4° per division.
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Fig. 6. Block diagram of frequency discriminator measurement sys-
tem with carrier suppression.

2.003062060 GHz (Trace C). The results for all three
modes are very close (within 2 dB). Based on the manu-
facturer’s PM noise specifications, the PM noise of the fre-
quency synthesizer used in the measurement system does
not contribute to the measured noise at Fourier frequen-
cies below 1 kHz. Nevertheless, the measured FM noise at
Fourier frequencies above 400 Hz was limited by synthe-
sizer noise, probably amplitude modulation (AM) noise.

Fig. 8 shows FM noise results for Resonator 3 at a 12-
dBm drive level. In this case, noise measurements were
made at two different modes: f; = 2.003935940 GHz (Trace
A) and f; = 2.004041860 GHz (Trace B). As shown, the
two traces are close, within 3 dB.

Table I shows a summary of the FM noise of the three
resonators. The column labeled S, (10 Hz) refers to the FM
noise of the resonators, and the column labeled £(10 Hz)
refers to the PM noise of an oscillator built using the res-
onator and a noiseless amplifier. This last column was ob-
tained from the S, (f) data and (1). These results show that
there is a spread of 8 dB in the FM noise of the resonators.
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Fig. 7. Intrinsic FM noise in three modes of Resonator 2.
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Fig. 8. Intrinsic FM noise in two modes of Resonator 3.

IV. DiscussioN AND CONCLUSION

The thin-film overmoded resonator transmission char-
acteristics exhibit multiple resonances (100 kHz apart),
which repeated every 13 MHz from 1 to 2 GHz. These close
resonances are probably due to the lack of parallelism in
the surfaces of the substrate. The FM noise of the 2-GHz
overmoded resonators was measured using a frequency dis-
criminator measurement system with carrier suppression.
To our knowledge, these are the first reported FM noise
measurements for this high-Q resonator technology. The
spread of the noise results among the three resonators
was 8 dB; the noise ranged from S,(10 Hz) = —202 dB

TABLE 1
FREQUENCY NOISE FOR OVERMODED SAPPHIRE RESONATORS.

Sy (10 Hz) £(10 Hz)
Resonator  Frequency (GHz) [dB rel to 1/Hz] [dBc/Hz]
1 1.996683000 —202 -39
2 1.990307400 —203 —40
2 2.002994680 —204 —41
2 2.003062060 —204 —41
3 2.003935940 —210 —47
3 2.004041860 -208 —45
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rel to 1/Hz to —210 dB rel to 1/Hz. The equivalent PM
noise of an oscillator using such resonators (assuming a
noiseless amplifier) would range from £(10 Hz) = —39 to
—47 dBc/Hz.

The resulting PM noise is approximately 30 dB lower
than the typical PM noise of 2-GHz commercial voltage-
controlled oscillator (VCO), approximately £(10 Hz) =
—10 dBc/Hz. However, overmoded resonators lack the tun-
ing capability of the VCOs because of the proximity of the
resonant modes. A possible oscillation scheme would be
to phase-lock a VCO to the thin-film resonator to obtain
lower close-in PM noise and tunability over a 1-GHz range
(every 13 MHz). The problem with this scheme is that be-
cause of the close proximity of the multiple resonances, a
very narrowband filter would be needed to select the cor-
rect resonance.

Three other acoustic technologies operate in this gen-
eral frequency range. Surface transverse wave (STW) res-
onators have Qs of a few thousand and exhibit low noise;
PM noise as low as £(10 Hz) = —50 dBc/Hz has been re-
ported for 1-GHz STW oscillators [7]. STW resonators can
also be used in VCOs, and they exhibit a turnover tem-
perature [8], [9]. Surface acoustic wave (SAW) resonators
typically operate at frequencies from 100 MHz to 2 GHz
[10]. Phase noise reports of £(1 Hz) = —55 dBc/Hz for
a 500-MHz oscillator with a loaded Q of 1000 has been
reported in [11]. This technology can potentially result in
low noise oscillators at 2 GHz. In addition, another over-
moded resonator previously studied is the high-overtone
bulk-acoustic resonator (HBAR) [12]. Tn these two-port
resonators, the high-Q substrate was located between two
thin-film piezoelectric transducers. FM noise results of
Sy (100 Hz) = —250 dB rel to 1/Hz were reported for 640-
MHz HBAR resonators [12].

In principle, overmoded resonators can be used to build
low-noise oscillators that are very small in size, but the
circuit would require a pre-selector to select the oscilla-
tion mode. These overmoded resonators are potentially
much smaller than other competing resonator technolo-
gies; nevertheless, these overmoded resonators do not have
a turnover temperature and exhibit a temperature coeffi-
cient of approximately —30 ppm/°C.
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